0-RTT Key Exchange with Full Forward Secrecy
نویسندگان
چکیده
Reducing latency overhead while maintaining critical security guarantees like forward secrecy has become a major design goal for key exchange (KE) protocols, both in academia and industry. Of particular interest in this regard are 0-RTT protocols, a class of KE protocols which allow a client to send cryptographically protected payload in zero round-trip time (0-RTT) along with the very first KE protocol message, thereby minimizing latency. Prominent examples are Google’s QUIC protocol and the upcoming TLS protocol version 1.3. Intrinsically, the main challenge in a 0-RTT key exchange is to achieve forward secrecy and security against replay attacks for the very first payload message sent in the protocol. According to cryptographic folklore, it is impossible to achieve forward secrecy for this message, because the session key used to protect it must depend on a non-ephemeral secret of the receiver. If this secret is later leaked to an attacker, it should intuitively be possible for the attacker to compute the session key by performing the same computations as the receiver in the actual session. In this paper we show that this belief is actually false. We construct the first 0-RTT key exchange protocol which provides full forward secrecy for all transmitted payload messages and is automatically resilient to replay attacks. In our construction we leverage a puncturable key encapsulation scheme which permits each ciphertext to only be decrypted once. Fundamentally, this is achieved by evolving the secret key after each decryption operation, but without modifying the corresponding public key or relying on shared state. Our construction can be seen as an application of the puncturable encryption idea of Green and Miers (S&P 2015). We provide a new generic and standardmodel construction of this tool that can be instantiated with any selectively secure hierarchical identity-based key encapsulation scheme.
منابع مشابه
Simple Security Definitions for and Constructions of 0-RTT Key Exchange
Zero Round-Trip Time (0-RTT) key exchange protocols allow for the transmission of cryptographically protected payload data without requiring the prior exchange of messages of a cryptographic key exchange protocol, while providing perfect forward secrecy. The 0-RTT KE concept was first realized by Google in the QUIC Crypto protocol, and a 0-RTT mode has been intensively discussed for inclusion i...
متن کاملThe OPTLS Protocol and TLS 1 . 3 ( extended abstract )
We present the OPTLS key-exchange protocol, its design, rationale and cryptographic analysis. OPTLS design has been motivated by the ongoing work in the TLS working group of the IETF for specifying TLS 1.3, the next-generation TLS protocol. The latter effort is intended to revamp the security of TLS that has been shown inadequate inmany instances as well as to add new security and functional fe...
متن کاملeCK Secure Single Round ID-based Authenticated Key Exchange Protocols with Master Perfect Forward Secrecy (Extended Version)
Recently, LaMacchia, Lauter and Mityagin proposed the extended Canetti-Krawczyk (eCK) model for Authenticated Key Exchange (AKE) protocols that covers many attacks on existing models. An ID-based AKE protocol with Perfect Forward Secrecy (PFS) (respectively Master Perfect Forward Secrecy (MPFS)) ensures that revelation of the static keys of the parties (respectively the master secret key of the...
متن کاملOne-Round Deniable Key Exchange with Perfect Forward Security
In response to the need for secure one-round authenticated key exchange protocols providing both perfect forward secrecy and full deniability, we put forward a new paradigm for constructing protocols from a Diffie-Hellman type protocol plus a non-interactive designated verifier proof of knowledge (DV-PoK) scheme. We define the notion of DV-PoK which is a variant of non-interactive zero-knowledg...
متن کاملOne-round Strongly Secure Key Exchange with Perfect Forward Secrecy and Deniability
Traditionally, secure one-round key exchange protocols in the PKI setting have either achieved perfect forward secrecy, or forms of deniability, but not both. On the one hand, achieving perfect forward secrecy against active attackers seems to require some form of authentication of the messages, as in signed Diffie-Hellman style protocols, that subsequently sacrifice deniability. On the other h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017